
Quantum-Resistant Key Encapsulation Mechanism -
The RVB algorithm

G. Brands1, C.B. Roellgen2

2017-10-16

Abstract
Classic public-key encryption- and key-establishment algorithms like Diffie-Hellman, RSA algorithms are vulnerable to

attacks from large-scale quantum computers, once such machines are reality.
A novel algorithm based on permutable functions and defined over the field of real numbers is proposed. The proposed

KEM/key exchange runs fast on universal computers like PCs or smartphones while not allowing for quantum speedup
when attempting to break the code.

Key words: Chebyshev, polynomial, real numbers, mantissa, Diffie-Hellman, RSA, key, exchange, encryption, cipher,

asymmetric, KEM, symmetric, permutable polynomials, permutable rational functions, Shor’s algorithm, Grover's
algorithm, quantum, computer, qubit, decoherence, Heisenberg uncertainty, entanglement, post-quantum.

Table of contents
1 The RVB algorithm...2

1.1 Chebyshev Polynomials...2
1.2 Mathematical Properties...3
1.3 Practical Computation of T polynomial values..5
1.4 Numerics..6
1.5 Representation..7
1.6 Specification of the RVB algorithm...7
1.7 Estimated computational efficiency and memory requirements..10

2 Security...11
2.1 General Remarks..11
2.2 Measurements of Randomness...11
2.3 Brute force sieve using Diophantine Equations...12
2.4 Chosen Plaintext Attacks / Chosen Ciphertext Attacks..13
2.5 Quantum Computer Security..16

3 Further applications of the RVB key exchange..19
3.1 Agreement Scheme for Conference Keys..19
3.2 Certificates and Proof of Knowledge...19
3.3 El Gamal type encryption scheme..20
3.4 Private Authentication and private Signature...20
3.5 Hidden negotiated Signature..20
3.6 Static Signature..22
3.7 Group Secrets...22
3.8 Partial Group Secrets..23
3.9 Secret on Behalf of a Group...23

4 Summary...24
4.1 General...24
4.2 Algorithm summary..25
4.3 Security Summary..26

1 Gilbert Brands, D-26736 Krummhörn, e-mail: gilbert(at)gilbertbrands.de

2 Bernd Röllgen, D-35576 Wetzlar, e-mail: roellgen(at)globaliptel.com

1

1 The RVB algorithm

This paper is a continuation of previous publications [16,17,18] started in September 2015.

1.1 Chebyshev Polynomials

The base of the proposed secret shared key negotiation algorithm are the well known Chebyshev polynomials (T

polynomials) [2] of the 1st kind which are defined recursively by

T 0 (x)=1

T 1(x)=x

T n (x)=2 ∙ x ∙T n−1 (x)−T n−2(x) for n≥2 with n∈ℤ , x∈ℝ

T polynomials are known to feature the semigroup property

T a (T b (x))= T a∗b (x)=T b (T a (x))

which enables for use in a Diffie-Hellman-type of algorithm for the public negotiation of a secret key. In short:
• Alice, and Bob agree on a common public value x .

• Alice selects a secret value a at random, sending T a(x) to Bob over a public channel in the clear.

• Bob selects a secret value b at random, sending T b(x) to Alice over a public channel in the clear.

• Alice and Bob derive a shared secret value according to the semi group property.

The algorithm can be used over arbitrary fields. Use over modular fields however does not lead to an improvement of

security compared with classic Diffie-Hellman or RSA since it results in the same complexity of O(qubits) [11, p.296

ff]. We therefore use it formally over a subset of ℝ with the mapping

T r : [−1,1] → [−1,1]

Within this restriction the alternative definition
T (x)=cos(a∗acos(x))

also holds, which has to be considered in the discussion of QC security. T polynomials are rapidly oscillating functions

in the interval [−1,1] , T a(x) having a simple roots at

xk , a (0)=cos(2 k−1
2 a

∗π)
and extrema at

xk , a (e)=cos(ka∗π)
When selecting a in a magnitude that is common for cryptographic applications, i.e. 2300

≤a , T a(x) yields

a strong pseudorandom number. Given x , y=T a(x) , there is no efficiant way to compute the secret parameter

a from T a(x) , even if a quantum computer operating with the number of qubits that are sufficient to easily

break classic Diffie-Hellman or RSA is used for the attack, as will be shown.

Due to the fact that only numbers that are part of the subset ℚ can be represented on a classical computer, we have

the further restriction that only rational numbers from the interval x∈ℚ : −1< x<1 ∧ x∉ {−1 /2 ,0 ,1/2 } are used.

This is another important fact that affects classic- and quantum computer security as can be concluded from the

mathematical properties.

2

1.2 Mathematical Properties

From the above properties the following theorems can be derived:

Theorem 1. If x∈ℚ : −1<x<1 ∧ x∉{−1/2 ,0 , 1 /2} there exist no weak arguments.

Proof. Except for the excluded values, T polymials only have roots and extrema in ℝ∖ℚ . Roots and extrema on

the other hand are fixpoints in calculations, and therefore weak input values. Taking x from the defined interval,
no fixpoint can be reached during the generation of a T polynonial value.

Theorem 2. The only way to calculate the shared secret of Alice and Bob within the boundary condition x∈ℚ is

to use the secret values of both.

Proof. Assume there exists an index r≠a fulfilling T r(x)=T a(x) . Thus P (x)=T r(x)−T a(x) is a

polynomial of degree max (r , a) having at most max (r , a) roots. On the other hand y=T b(x) is a strong

pseudo random number, b being as well an arbitrary random number. Thus fulfilling also T r(y)=T a(y) is

possible if and only if y is a root of P (x) as well, which is (nearly) impossible for a random argument. It can

therefore be concluded that

(T r(y)=T a(y) ⇔ P (y)=0) ⇒ r=a .

This conclusion might appear to be weak in the strong mathematical sense up to this progression of the proof. This gap

will be closed in theorem 4.

Theorem 3. There exist no side channel attacks using alternative forms of T polynomials within the boundary condition
x∈ℚ .

Proof. From y=cos(a∗acos (x)) with known values x , y , Eve may calculate a=
acos(y)
acos (x)

 to derive a .

Taking the ambiguity of the trigonometric function into account, Eve‘s solution is however ambigeous to

ak (x)=
±arccos(T a)+2 ∙π ∙k

arccos(x)
=±d+e ∙ k , k∈ℤ , d , e∈ℝ

Eve now has to look for solutions k satisfying a(k)∈ℤ of this equation which exist per precondition.

Case 1: let d , e∉ℚ and ±d+e∗k∈ℚ ∧ ±d+e∗l∈ℚ with |k−l|>0 being minimal. Then

e∗(k−l)∈ℚ ∨ ±d+e∗(k−l
2)∈ℚ ⇒ k=l

So there exist one, and only one solution in this case. There is no known analytical solution for equations of this type.

Case 2; let d , e∈ℚ . From acos (y)=π⋅y z/ yn , acos (x)=π⋅x z /xn the diophantine equation

k⋅2⋅yn⋅xn−n⋅yn⋅x z=− y z⋅xn

can be derived which has solutions if and only if

yn≤gcd(2⋅yn⋅xn , yn⋅xz) ∣ yz⋅xn

or, since all fractions are truncated to the smallest value per default, if xn=l∗yn . Trigonometric functions

definitely don‘t allow for obtaining this feature. Therefore there exists no algebraic solution for this problem.

From both paths we obtain the assertion that there is one and only one solution to the problem with neither analytic nor

algebraic possibilities to identify the solution.

3

Remark. The possibility of attacking T polynomial encryption by trying to take advantage of the inverse of the cosine

representation of Chebyshev polynomials is described in literature [5], but the supplied examples are definitely wrong,
which can be proved by simply recalculating the example using a pocket calculator. The authors calculated

T a(T b(x)) in their example, but recalculating T b(T a(x)) reveals a completely different value and shows that

the authors never tried to do so. They have unintentionally ignored the principles of numerics that are crucial for this

type of calculations. Precision of IEEE 754 is very rapidly insufficient when dealing with Chebyshev polynomials of
moderate degree.

Theorem 4. If T a(x)=T r(x) , a≠r then x∉ℚ .

Proof. This is one of the rare cases in mathematical deduction where a proof can be based on a few exemplary

calculations. T polynomials intersect in the interval [−1,1] , and as can easily be verified experimentally, the
intersections of T polynomials show periodic character (Fig. 1).

Fig. 1: T polynomials sharing an intersection

a) The image shows an intersection of T 3 , T 4 ,T 10 , T11 ,T 17 ,T 18,T 24 , .. . clearly indicating the periodic character in the

degree (index). From theorem 3 we already know that there are no periods if x∈ℚ , hence intersections are not

rational which closes the proof of theorem 2.

b) The points of intersection are defined by

cos(a∗acos(x))=cos((a+ i∗k)∗acos (x)) , i∈ℕ

or

cos(a∗acos (x))=cos((a+t+i∗k)∗acos (x)) , i∈ℕ

with k being the period (in our example calculation k=7), and t a non-periodic distance (in our example
t=1). Comparing the arguments of the cosine function in these expressions with the arguments in the periodic

equality cos(z)=cos(±z+ j∗2∗π) , k∈ℤ just leaves for acos (x) the possible values

acos (x)=
l
m
∗π

4

with l , m being some integer numbers that can be calculated from the values selected for t , i , k . Hence the
intersections coincide with the extrema, or roots of the T polynomials (Fig. 2 as an example showing the intersection of

T 3 , T 4 , and the maxima of T 7,T 14).

Fig. 2: Relation of intersections and extrema

1.3 Practical Computation of T polynomial values

To come to a useful formula for the fast evaluation of arbitrary T polynomials with large degrees, the recursive

definition can be expressed in matrix notation:

(T n(x)
T n+1(x))=(

0 1
−1 2x)(T n−1(x)

T n(x))=(
0 1
−1 2x)

n

(T 0(x)
T 1(x))

Since T 0(x)=1,T 1(x)=x , this formula allows to compute the functional value of the T polynomial with degree

n by a simple matrix exponentiation. The exponentiation itself can be executed by the classical binary

exponentiation algorithm with complexity log(n) .

The computation may further be improved by using the Caley-Hamilton theorem. The characteristic polynomial of the

above generator matrix is

λ
2
−2x⋅λ+ 1=0

Assuming λ
r
=a r⋅λ+ br and λ

s
=a s⋅λ+ bs , we yield

λ
r+ s
=(a rλ+ br)⋅(asλ+ bs)

 =a s arλ
2
+ (ar b s+ a s br)λ+ bs br

 =a s ar (2xλ−1)+ (ar b s+ as br)λ+ b sb r=ar+ sλ+ br+ s

So every matrix multiplication in the above algorithm may formally be substituted by a multiplication of two linear
polynomials, and substituting λ

2 in the result by the equality derived from the characteristic polynomial resulting

again in a linear polynomial representing a higher power of the eigenvalues (formally this is nothing else but

p1⋅p2(mod λ2
−2xλ+ 1)). Since a matrix satisfies its own characteristic polynomial according to Caley-Hamilton,

substituting λ → A also results in An in the power algorithm. When counting the number of calculations, this

algorithm may be slightly faster than the one above depending on the implementation.

5

1.4 Numerics

Using large indices results in bulky rationals which cannot be handled. Therefore floating point numbers with fixed
length have to be used which brings in another handicap that is particularly important for quantum computer

calculations.

From the definition formula of T polynomials we know that the integer coefficients ak of T r(x)=∑
k=0

r

ak∗xk

span an interval 1≤ak<2k in magnitude, yielding up to a real number −1< y<1 in the evaluation of the

argument. Therefore we have to cope with a massive loss of digits during the calculation.

Floating point numbers have a fixed length and are always normalized to the most significant bit. If two similar

numbers are subtracted from each other, the most significant bits of the result are zero, but the remainder is shifted left
until the highest bit is (formally) set:

1.1234567 xxxxxxx−1.1234567 yyyyyyy=0.000000 zzzzzzz → z . zzzzzz 00000000

In this simplified example, two numbers of 15 digits in length each result in a new number with formally 15 digits, but

only 7 of them having physical significance, the rest being added during the nomalization operation.

During the key negotiation process between Alice and Bob each using secret numbers with n decimal digits, it must

be expected in practice due to these effects, that the least significant 2∗n digits in the final key are not identical on
both sides. Therefore the length of the floating point numbers for a calculation with secrets of size n decimal digits

and a shared key of at least n decimal digits expected to be equal in the results on Alice's side as well as on Bob's,
the register size must be set to 3∗n decimal digits at minimum.

Remembering our remark on theorem 3, these effects were obviously not accounted for in [5]. The authors mutually
used mid range secret values and standard IEEE 754 double floating point variables. Only approximately two matching

decimal digits in the shared secret of Alice and Bob from a total of 16 digits could be observed.
The number of actually matching decimal digits on both sides differs between key exchanges and this effect can be

exploited to yield longer shared keys. Instead of selecting a fixed length, both peers can exchange hash values of the
shared key with e.g. n+ 5 , n+ 10 , .. decimal digits and mutually agree on the longest key with matching hash

values. The resulting key exchange is much more complicated to implement and it is generally better to select a longer
register size if longer keys are required in an application.

The shared public parameter x is potentially susceptible to producing secret values -1, -0.5, 0, 0.5 and 1.0. A very
elegant way to harden the proposed key exchange algorithm against this is to use numerics: If one of the participiciants

or a third party is able to provide an x-value of a root or an extrema with full precision of the floating point
representation, this may be used in some malicious way (although we arrived at no idea how to realize a fraud). An

intermediate or shared key value may consist of a large number of zeros or nines in the mantissa leading to a widely
known result or preventing to arrive at a shared secret value at all.

It is sufficient to cut the x-value to the targeted precision of the shared key and to fill the remaining digits with zero.
Both secret values of the two peers will be far away from any root or extremum and the desired secret shared secret will

appear as the result without significant loss of accuracy.

Roots and extrema have been explicitly excluded in chapter 1.1. Another possibility to identify shared public
parameters x that result in roots or extrema is to explicitly check the computed secret values. Fraudulent action can

although only be prevented by providing a truncated shared public x .

6

1.5 Representation

In order to exchange values between participiciants using software from arbitrary manufacturers, the floating point
values have to be represented in a universal manner. The ASCII representation as a human-readable number string with

base 10 is part of every numeric library, and is also a valid representation in ASN.1 notation, which is widely used in
protocol definitions. It thus appears to be advantageous to use this human-readable notation.

Exchanged values may become very small. Different libraries may represent small values in different string forms, for
example

0.00056 ..≡5.6 ...e−004

To guarantee compatibility of different implementations to some extent, it is recommended that values are represented

as stings starting with ±0. xxxx up to a certain number of zero characters after the dot before switching to
exponential representation. Most libraries support this for up to 16 digits (double precision).

In order to derive a shared binary string, a cryptological secure hash function, for instance SHA-3, should be used.

1.6 Specification of the RVB algorithm

The proposed key agreement algorithm implemented as Key Encapsulation Mechanism for the participation in the

NIST PQC project works in analogy with the DH/El Gamal algorithm and is specified as follows:

Alice and Bob agree on the targeted length of the shared key (e.g. 256 / 384 / 512 bit = 32 / 48 / 64 byte). The system

calculates the secret size n (100 / 150 / 200 decimal digits) and the length of the register size that holds the mantissa.
This register size must be set to 3∗n decimal digits at minimum due to the loss of digits by rounding operations.

Alice and Bob subsequently agree on a publicly known real number x with a total number of decimal digits beetwen n
and 2*n , and choose some large secret integer values a and b with n decimal digits at random and compute:

T a(x) , T b(x)

Alice and Bob then exchange these values via an insecure channel.

The mutual secret key is computed by combining the two functions

T a(T b(x))=T b (T a (x))=Ta∗b(x) .

Alice's result T a(T b(x)) and Bob's result T b(T a(x)) should theoretically be identical. Due to inevitable

rounding errors, typically the first third of the bits of the mantissa equal on both sides. The remaining two third of the

bits need to be cut away. Only the most significant decimal digits of the targeted length of the shared key (e.g. n=100
decimal digits + a certain additional amount to account for bias of the first decimal digits) of the mantissa thus remain

and constitute the raw shared key.

The raw shared key is compressed by a hash function like SHA-3 and thus results in the binary shared key of desried

length. In contrast to DH or RSA, which both yield 100% identical results on both sides, only the first third of the bits
of the mantissa can be used for this operation.

The iterative generator is used to directly compute the function value of T polynomials with index n featuring a

similar number of decimal digits:

(yn

y n+1
)=(0 1

−1 2 x)(yn−1

yn
)=(0 1

−1 2 x)
n

(1x)
7

The powering of the 2*2 matrix can be executed with the binary power algorithm with time complexity O (log(n)) .

The first element of the right vector is directly the desired result after multiplying the result matrix with the vector

(1x) .

This is a generalized C++ code primitive for fast exponentiation with the variable b being an object of a matrix class
and e being the exponent:

template <class T, class S> T power(T b, S e){
 T res(1); // the unity matrix later holds the result
 while (e!=0) {
 if ((e & 1) !=0) res*=b;
 b*=b;
 e>>=1;
 }//end while
 return res;
};//end function

The template parameters are a primitive 2*2 matrix class with high-precision floating point variables for b and a large

integer for n representing the degree (index) n of the T polynomial to compute. The matrix and vector class is
defined by

template <class T> struct v2 {
 T a1,a2;
};

template <class T> struct m22 {
 m22()
 {
 a11=a12=a21=a22=0;
 }
 m22(size_t n)
 {
 a11=a22=n;
 a12=a21=0;
 }
 m22& operator*=(m22 const& m)
 {
 m22 c;
 c.a11 = a11*m.a11 + a12*m.a21;
 c.a12 = a11*m.a12 + a12*m.a22;
 c.a21 = a21*m.a11 + a22*m.a21;
 c.a22 = a21*m.a12 + a22*m.a22;
 *this=c;
 return *this;
 }

 v2<T> operator*(v2<T> const& v) const
 {
 v2<T> res;
 res.a1=a11*v.a1+a12*v.a2;
 res.a2=a21*v.a1+a22*v.a2;
 return res;
 }

 m22& operator=(size_t i)
 {
 a11=a22=i;
 a12=a21=0;
 return *this;
 }
 T a11,a12,a21,a22;
};

We favourite C++ as programming language because it is available on almost all platforms and it is known to produce
fast executable code from best readable source code. The reference implementation in ANSI C provided for the NIST

PQC project follows the exact same modus operandi.

The template parameters in the preceeding code are long float, and long integer variables with the length adjusted to the

8

desired security level. Instead of reinventing the wheel once again, we decided to use standard multi-precision libraries
for our implementation. The GMP and MPFR libraries used for the NIST reference code can hardly be included as

source code in a project, but must be used as static or dynamically linked libraries, which might be a disadvantage in
some development projects. We therefore make a supplemental C++ implementation available on request, which uses a

compact, but less efficient library with the source completely included in the project.

A separate implementation of the Caley Hamilton algorithm as a substitute for binary exponentiation is omitted because

it would only provide a minor advantage in execution time.

For the actual form of the algorithm, KEM has been selected.

For KEM, a fixed common parameter is used. The parameter can as well be negotiated prior to using the Key

Encapsulation Mechanism. Any real number common∈ℚ : −1<common<1 ∧ common∉ {−1 /2 ,0 , 1/2 } can be

used (as described in 1.1 and 1.2). In the reference implementation, the value is

static char common[] = "0.89585752633605658259962757354074361184152112599434470954980166"
"8936825624025756210689965593730525714897441270689026698619735402"
"8658759452647450231892013396324924360184911287224171095108916892";

The value was selected according to the following security considerations:

• It should not start with a sequence like „0.99999..“ because of the attack described in chapter 2.

• It should be in the range of +/-(0.7 .. 0.98) because the density of roots of the T polynoms in this interval is
very high resulting in highest variations of output applying small variations in input.

• It should be purely random in all digits but the first two.

• It should be short enough to be far away from all roots or extrema.

• It should be long enough to allow for rounding operations right from the beginning.

In the reference implementation the function make_common_value() is available to generate other values for testing.

We decided to keep the value constant because this has several advantages in practical applications, as is done in other
PKE algorithms like standard Diffie Hellman. This value can be used for all shared secret sizes without loss of security.
It has been freely selected by observing the above constraints.

The function int crypto_kem_keypair(unsigned char *pk,unsigned char *sk)

selects a long integer number for the secret key sk and calculates the public key pk by computing

pk=T sk (common) .

Bob creates the key pair by calling the above function and sends the public key to Alice. Alice sets the shared secret ss,

an array comprising 32, 48 or 64 bytes, to the desired value. ss will later contain the secret shared by sender Alice

and receiver Bob.

Alice subsequently calls int crypto_kem_enc(unsigned char *ct,unsigned char *ss,const unsigned char *pk).

The function computes

mask=T tsk(common) with the large integer number tsk being selected at random by Alice.

The function subsequently computes y=T tsk(pk) , truncates the decimal string representing y to approx. a

third of its total length and passes the resulting string ytruncated to a hash function:

shared=SHA 3 (y truncated) .

9

Finally the shared secret ss is XORed with shared

msg=shared xor ss

and the resulting value msg is sent together with mask to the receiver Bob (both values are concatenated and

form the parameter ct).

Bob calls int crypto_kem_dec(unsigned char *ss,const unsigned char *ct,const unsigned char *sk)

in order to decrypt msg , the function separates the values msg and mask in ct and computes

yb=T sk (mask) , truncates the decimal string representing yb to approx. a third of its total length and

passes the resulting string ybtruncated to a hash function:

shared b=SHA 3(ybtruncated) .

Finally the value msg is XORed with shared b

ss=sharedb xor msg

and the value that sender Alice has selected for ss is decrypted.

1.7 Estimated computational efficiency and memory requirements

The proposed key agreement algorithm executes as 64 bit machine code on a single processor core of an Intel Core i7-

6700K running at exactly 4.00GHz at the following speeds:

Targeted accuracy
[decimal digits]

Floating point precision
[decimal digits]

Execution time of ANSI C implementation
[ms] using GMP and MPFR numeric

library (Compiler: GCC 4.9)

100 366 6

200 655 22

300 963 59

Table 1: Execution time of an Intel Core i7-6700K running at 4.00GHz of both halves of an RVB key exchange in a
single thread using different numeric libraries

Execution time comprises the complete key exchange for both participants, namely the generation of the two public

keys yr=T r(x) and ys=T s(x) , as well as the generation of both secret keys z=T r (y s) and z=T s(yr) .

In any real-world application, only one public and one secret key is generated by an endpoint. As a matter of

consequence, the figures that are stated for execution times in all the tables is this paragraph need to be divided in half
in order to yield the execution time for a single endpoint.

Optimizations are nearly impossible, as long as linkable standard libraries are used because these libraries themselves

use system dependent optimization strategies which cannot be controlled by the application developer. Our optimized
implementation therefore is identical to the reference implementation. Using small and directly included libraries in

source code as for the C++ implementation mentioned above, optimization strategies using for instance OpenMP can
be applied successfully.

Execution time is especially critical in server applications. Servers are in most cases likely to emit a certificate, so that

only one operation, namely calculating the shared secret, will be necessary. The GMP/MPFR library is rather complex,
large and highly system dependent, but should be available on most server hardware, and by using this library, the

10

central part of the key exchange calculation yielding a key with at least an equivalent strength of a 256 bit symmetric
cipher is executed in only 3 .. 4 ms on a single CPU core. In client applications, however, time will not be critical, so

that other libraries can be favored as their source code can be directly compiled together with the source code of the
application program, which eases platform independent programming.

Memory consumption has it's peak in the calculate() function. On each side of the key exchange (Alice/Bob), the

following RVB parameters must be held in Random Access Memory:
mpz_t: the secret value and the exponent in the exponentiation algorithm two times as an intermediate = 3 variables

mpfr_t: the common x , the keys y_a and y_b, the result res, the m22 matrix m containing 4 mpfr_t, the vector v
containing 2 mpfr_t, 8 mpfr_t in the power() function and up to 16 mpfr_t in mult_m22_m22() depending on the level

of optimization, resulting in 34 mpfr_t variables.

The following table depicts the minimum memory requirements for the three different target accuracies in bit:

Variable Targeted accuracy: 100
decimal digits

Targeted accuracy: 200
decimal digits

Targeted accuracy: 300
decimal digits

mpfr_t 34 * 1,472 34 * 2,432 34 * 3,456

mpz_t 3 * 1,344 3 * 2,304 3 * 3,328

Sum [bytes] 54,080 bit = 7 k 89,600 bit = 11 k 127,488 bit = 16 k

Table 2: Memory requirements of the proposed key agreement algorithm on the NIST PQC reference platform

2 Security

2.1 General Remarks

The proposed algorithm is comparably simple, which is helpful for security assessment. Security estimations are based
purely on the mathematical properties of the algorithm, which also holds for quantum computer security. The

underlying mathematics leave no room for any attacks that target design flaws. Simplicity might be one of the key
advantages of the algorithm. We show that attacks proposed in earlier literature do not work.

2.2 Measurements of Randomness

As proven in the previous mathematical section, there exists (today) no efficient way to identify the secret index from

the publicly known values x ,T a(x) ,T b(x) . Taking into account that someone might conceive an algorithm that

performs better than brute force, we assume that in order to assure 256 bit security, 100 decimal digits (about 330 bit)

should be sufficient, resulting in floating point operations with register sizes of approximately 1,200 bit.

Classic RSA and DSA schemes require key sizes of at least 2000 bits [15, Table 1.2] in order to feature a security level

of 128 bit for symmetric ciphers. The proposed algorithm is much faster than DH or RSA.

Alice and Bob's shared key T ab(x) has been tested experimentally for randomness with arbitrary values for the

parameters a, b and x as well as with chosen values with small known differences between the values using the
Diehard battery of randomness tests [13].

11

The shared numeric secret string deviates from randomness in the first 3-4 binary digits because the gradient of the
trigonometric function varies strongly between root and maximum. Our tests show that the remaing binary digits of the

mantissa exhibit proper pseudo random behaviour with no bias.

Uneven distribution due to the 3 leading bits can be observed in the following tests:
• Overlapping-Pairs-Sparse-Occupancy: digits 1 .. 10 and 23 .. 32

• COUNT-THE-1's TEST for specific bytes: digits 1 .. 8, 2.. 9, 3 .. 10

• SQEEZE test: p-value=1.000000

• CRAPS TEST: p-value for no. of wins: .002047, p-value for throws/game: .992118

When removing the 3 leading decimal digits, all tests were passed without the slightest deviation from perfect

randomness. The positive test result leads to the conclusion that the quality of Alice's selection of a random x can
feature imperfect randomness without affecting security of the key exchange.

As is good practice for DH or RSA implementations, the mutual secret value is to be transformed to a secret encryption
key by hashing an appropriate number of decimal digits. In the reference implementation the entire string containing

the sign, comma and the mantissa is supposed to be fed into the compression function for the sake of simplicity and
because there are no negative side effects of doing so.

2.3 Brute force sieve using Diophantine Equations

Although we have proven in theorem 3 that a direct solution of the inverse of the cosine representation of Chebyshev
polynomials

r=±
arccos(y)
arccos(x)

+
2⋅π

arccos(x)
⋅k=±d+ e⋅k with r , k∈ℤ , d , e∈ℝ

cannot be used to yield an equation that allows to evaluate the parameter r , we follow the route given in [5] to
investigate whether an approximation of r can be guessed with some degree of fuzziness. This could open a

significantly rapid way to determine the correct value – much faster than pure blind brute force.
The goal is to find an integer number k so that all digits of the fractional part of both real numbers cancel each

other out. Abstractly worded, the sieve is on for a solution which satisfies
±d≡k⋅e(mod ℤ)

whereat a≡b (mod ℤ) ⇔ a−b∈ℤ means that the difference of two real numbers a , b must be in the subring

of integer numbers. This appears to have some similarities with modular arithmetic, which is frequently used in

cryptography and which requires ideals over a ring. Integer numbers are although everything but an ideal of real
numbers. They are only a subring of real numbers, and therefore modular arithmetics cannot be applied directly.

The method of resolution in [5] consists of the multiplication of a real number by a sufficiently large integer number

M=10m (the representation as decimal power is not mandatory but eases analysis so that it is possible to stick to

the assumption without loss of generality), taking the integral part for the further calculations. By doing so, the

equation is transformed into a diophantine equation:
±[d⋅M]≡k⋅[e⋅M] (mod M)

The brackets [..] represent the floor function (mapping of a real number to the smallest adjacent integer), or in an
equivalent form not using a modulus

k⋅[e⋅M]+n⋅M=±[d⋅M]

In order to be solvable,
gcd ([e⋅M] , M) ∣ [d⋅M]

must be fulfilled. In order to arrive here, a multitude of proven algorithms exist since the ancient world: the (extended)

Euclidean algorithm, the continued fraction method, the Euler method and Euler's theorem with the aid of the Chinese

Remainder Theorem. Having the special solutions {k ' , n ' } depending on the solution method used, all other

solutions are of the form
k (z)=k '+ M⋅z

n(z)=n'+ [e⋅M]⋅z

12

with arbitrary z∈ℤ , and the expectation is to find the exact secret r among the n (z) series.

Whereas in [5] the proposed method was used to detect the secret directly (we already know that this is a fake), the idea

was to use the values as the centers of a linear grid, and search for the correct value starting from these values by
gradually increasing the radius of the search interval. As for brute force, such a sieve must hit the value somehow.

To sum up the results:
• Very small values for M produce a fine grid that is not useful for a sieve.

• Very big values for M produce grid points not even being of the same magnitude as the secret value.

• A small interval of M values produces a manageable number of grid points in the appropriate interval but

these values are randomly distributed, meaning the values of M have nothing in common with values of
M ' .

• Empirical evaluations show that the secret value is randomly distributed between the grid points.

This attack consequently performs not better than a pure brute force evaluation of possible values for r .

2.4 Chosen Plaintext Attacks / Chosen Ciphertext Attacks

In this chapter three different attacks are described. The first two (IND-CPA and IND-CCA2) depend on a public
encryption scheme like El Gamal. The El Gamal scheme for the proposed key exchange algorithm is defined later in

the paper (see section 3.4). The third attack applies to the basic algorithm.

The IND-CPA Scheme

The key exchange proposed in this paper is primarily intended for ephemeral-only key establishment. The proposed

key exchange must consequently provide semantic security with respect to chosen plaintext attack (IND-CPA).

This is how the game between an adversary and a challenger is defined:

The adversary shall have unlimited access to a probabilistic polynomial time Turing Machine – the „oracle“.

Challenger Alice selects the secret key a and the public parameter x at random and computes the public key
T a(x) . Alice retains the secret key a and sends x and T a(x) to Bob.

The adversary (Bob) now is free to perform any number of operations in polynomial time to generate two different

messages b1,b2 , and to send them to the challenger.

Challenger Alice decides, at random, to use one of the two messages from adversary Bob. Alice encrypts the chosen

message using her own public key T a(x) and the random masking parameters specified in section 3.4, and sends

the ciphertext back to Bob (note: Alice is able to decrypt the message using her private key). Adversary Bob now tries

to guess which of the two messages Alice has selected for encryption. Adversary Bob wins if he has more than a
negligible advantage in guessing the correct choice the challenger has made.

The proposed ephemeral key exchange is IND-CPA secure. With every new key exchange, the adversary can learn
nothing about the challenger's choice because of the strong pseudorandom behavior of the encryption algorithm. The

adversary is consequently deprived of any advantage.

The IND-CCA2 Scheme

The game for adaptive chosen ciphertext attacks (IND-CCA2) differs from the first game by allowing adversary Bob to

send further messages after having received the encrypted message, except the encrypted message itself, Alice
answering immediately with the encrypted message. Neither x nor a are changed during this communication,

the masking parameters described in section 3.4 are however chosen randomly for every message. Again Bob has to
guess which of the two messages was encrypted in the first place.

13

The proposed ephemeral key exchange is IND-CCA2 secure because the masking is pure pseudorandom and cannot be
removed without knowledge of the secret parameter. The adversary is consequently deprived of any advantage because

different plaintexts will result in ciphertexts with pseudo-random nature.

The Key Generation Oracle Scheme (Side Channel Attack)

Deviating from the above schemes, Alice has control only of the static secret key r , and has to return T r(x) for

every submitted value x . An attacker may provide a huge number of carefully chosen values for x to a token

device (for example) and save the answers.3 Is the attacker capable of gathering enough information in order to recover
the secret key r ?

Attacker Eve may follow the following strategies:

(1) Eve can try to find a root (or, less efficient, an extremum) of T r(x) by varying x in small portions by the

nested interval method. Eve can easily find an interval containing only one root, and determine the root with the

precision of the token‘s I/O through repeating this process. The nested inverval method generates one result bit per

cycle, so Eve will need to run O (n) cycles with n being the length of the mantissa in bit of the floating point

numbers.

Having determined a root, Eve has to find a pair of integers k , r that solve

2∗k−1
2∗r

=
acos(x)

π

A working option is to develop the floating point number on the right by the continued fractions method described in
section 2.3 to get some good estimations of possible pairs k , r . We experimentally followed this path by trying to

find a secret of 30 digits only. The pecision of the floating point numbers was 360 decimal digits, which is four times
the ratio of the floating point precision / secret digits of the standard algorithm implementation. In most cases the

candidates don‘t even hit the magnitude of the values searched for, not to speak from extracting some digits
systematically.

We expected these results because of the inevitable rounding errors present (ref. section 2.3). Although, from a

mathematical point of view, acos (x)/π has to be a rational number and this never happens in real computations.

(2) Eve may try to find values for x for which a corresponding k is easy to determine. If Eve arrives here, she
can compute r without any problem. Small k , or values k≈r result in x approaching the forbidden

x=1.0 (e.g. x=0.9999999999123456789). However, Eve can for inctance determine r exactly for
k=1 in a scan search, i.e. Eve searches the root next to x=1 . An alternative way to determine r for another

easy to determine second number that might allow for exact determination, k=r /2 , i.e. looking for the root next to
x=0 , does not yield r because of rounding errors.

Clearly the distance between adjacent roots is a function of the secret parameter r . If Eve determines another root
some distance away from x=1.0 , Eve has to count the roots in between x=1.0 and the chosen value to get the

exact k to perform the calculation. Choosing a wrong k results in a wrong value for r .The more x

differs from +/-1.0, the more equally probable values for k exist:

3 We already limited the precision of the public parameter x , but the public key of an adversary may appear with full
floating point precision. The resulting shared secret can however not be seen by the adversary, but in multi-threaded
systems there may be a central „oracle“ that does not know the origin of the supplied value, and therefore has to
answer whenever asked to do so.

14

D = 1.0-x Log10(k)

10−120 50

10−70 75

10−20 100

Table 3: Relationship between the vicinity of x from 1.0 and the number of equally probable k (stated in
log10(k)). The table is valid for the 100 digits shared secret size.

Table 3 is best interpreted this way: the last line depicts the effect of only allowing x to come as close as 20
decimal digits to 1.0. The uncertainty of an adersary to guess k is in the order of Alice's secret parameter r

then, i.e. Eve would have to count O (10100
) roots between the greatest allowed value for x and 1.0 to yield the

exact value for k , and she can get no advantage from this attack. If the adversary sends values near 1.0, the token
device should discard the input, and should return an error message. Because x will normally be a pseudorandom

value (a common x or a public key T b(x) , not a value chosen at will by the attacker), critical x approaching

1.0 by as close as D=10−20 in normal operation will appear with probability w=10−20 . This is definitely

acceptable for practical implementations.

(3) Due to the pseudo-periodic behavoir of the analytical function T r(x) , small differences in x will return

values from the same period. This may give the attacker the chance to estimate the local period length Δ x of
T r(x) , and thus to estimate

Δ x=cos(π∗
2∗k−1

2∗r
)−cos(π∗

2∗k+1
2∗r

) .

Again, Eve has to find a pair k , r solving the equation. The advantage of this strategy is the possibility to derive
m systematically coupled equations containing the same k , r by the m - fold effort to determine one

distance:

Δ x(m)=cos(π∗
2∗k−1

2∗r
)−cos(π∗

2∗(k+m)−1
2∗r

)

Eve may follow the evalution path suggested in (1), or may try to narrow the interval for k (2) by some means to
decrease the number of k /r candidates.

An algebraic solution for these formulas does not exist, so they have to be solved numerically. As there are two
variables k , r to be determined, we arrive at the problems discussed above.

In the future, other possibilities to determine a pair k , r may be developed which may result in useful estimations.

But at least all such attemps will heavily depend on the ability to inject parameters at very high precision. In order to
prevent from this, we therefore introduce, as a further option, to limit the number of decimal digits to all RVB input-

and output parameters to e.g. 200 decimal digits. As an example, a hardware token device simply ignores digits beyond
this limit and returns output parameters that are already truncated. The size of the common parameter x anyways

needs to be truncated (section 1.6). So this option additionally affects the public keys. For a secret size of 100 digits, a
cutting procedure results in a limited precision of the determined root values:

15

Size of public value
[decimal digits]

Distance to root/extremum for
x

100 > 10-3

150 > 10-40

200 > 10-90

250 > 10-150

300 > 10-200

Table 4: Effects on the accuracy of an adversary trying to hit a root or an extrema in a worst-case attack scenario

On the other hand, limiting the digit size of the public key also limits the number of equal digits in the shared secret:

Size of public value
[decimal digits]

Difference in Shared Secret

100 > 10-3

150 < 10-35

200 < 10-85

250 <10-130

300 < 10-130

Table 5: Reduction of size of shared key when adding reduction of the floating point accuracy for all public RVB

parameters

Depending on the actually chosen limit, floating point accuracy has to be increased in order to arrive at the desired

security level for the shared secret. As there seems to exist no effective attack at present, this optional measure should
not be mandatory for encryption applications like the ones proposed in chapter 3. Limiting the minimal distance from 1

of the input parameter x is however mandatory to prevent from this attack.

Note. This side channel attack applies to special applications with static secret parameters only. For ephemeral-only

key exchanges, this worst case attack is anyways not applicable as the adversary has to deal with public and secret RVB
parameters that are selected at random for each and every new key exchange. An adversary has no access to the secret

parameters except for his own.

2.5 Quantum Computer Security

We assume that the reader is familiar with quantum computing principles:

• Today there are three types of quantum computers known:

◦ The adiabatic quantum computer which is developed up to the lower level of the number of qubits

necessary to attack cryptography, but is widely accepted to be not suitable for cryptanalytical attacks.
◦ The algorithmic quantum computer which is THE candidate for attacking cryptography, but is developed

up to only about 10 qubits today [9].

◦ The bulk quantum computer being only a theoretical qc model as of today.

• Qubits are prepared in superpositioned states at the beginning of the computation, and are entangled during

computation. Entanglement of all qubits that hold the results with those holding intermediate results must be
maintained from the beginning of the computation to the end. Quantum computation doesn’t allow for storing

intermediate results, or computing only parts of the desired result and combining them later to the complete

16

solution by other means.
• All operations must be fully reversible to allow all assistant qubits to settle to pure states before reading out

the result because of entanglement of all qubits.

• Quantum states are not stable, rendering error correction to a central necessity for quantum computers [10].

Error correction for one qubit consumes 2 .. 8 further qubits, which carry no information about the actual state
when used to perform a correction operation by a measurement. As long as no information is leaked, they may

theoretically be appended during computation to increase the limited computation lifetime to a level that is
necessary to solve the problem, but this also increases the number of operations, and qubits, and the

complexity of the qubit infrastructure.
• It is necessary to bring qubits into direct contact with each other in order to allow for entanglement to take

place. A quantum computer consisting of several thousand qubits must be able to selectively combine every

qubit with every other qubit in entanglement distance, or to allow for other techniques to enable entanglement
operations between distributed qubits by means of, for instance, chains of helper qubits, thus resulting in a

high complexity of the qubit infrastructure for arranging the qubits of the quantum registers in a way that
entanglement can take place.

Although the proposed algorithm operates over ℚ , we start our investigation with a solution for T polynomials over

finite modular fields with an n bit integer representation to gain an insight of the principle effort of a quantum
computation. With recourse to the matrix exponentiation algorithm, the exponent variable m – the value that is

searched for – is initialized with an appropriate superposition of possible states. Since the generation matrix A is well
known (x is a publicly known value), all values of matrix elements in the powers can be hidden as precalculated

constants in the quantum operations, and no qubit is necessary for storage. The result matrix R however is initialized
with the identity matrix, updated in each powering step and is related by some means to the second public value y .

Since all qubits are entangled, the comparing step reacts on the exponent register increasing the probability to measure
a usable result in the end. After having executed one or more powering steps resulting in a new intermediate R , the

algorithm is rolled back which means that the new intermediate result is now used to erase the old one leaving the
qubits in pure states, and thus just allowing to reuse them in the further calculation, or to allow a measurement of the

final result with all informations concentrated in the result qubits. Further details of this rough abstract of the
computation depends on the quantum algorithm that is actually used.

To store m and the matrix R, 5 qubit registers with at least n qubits each are required. A 2*2 matrix operation is
mathematically performed by computing

C=A⋅B=(a11⋅b11+ a12⋅b21 a11⋅b12+ a12⋅b22

a21⋅b11+ a22⋅b21 a21⋅b12+ a 22⋅b22
)

When executing the complete algorithm, the QC programmer may follow the following strategy: he calculates Rk +1

and uses this matrix to erase Rk (= preparing the qubits of Rk in a pure ∣0〉 state) immediately by

multiplying Rk +1 with A−1 , the inverse again hidden in the quantum operations (this is the standard procedure

to save qubits, but an in-depth analysis of the possible strategies may come to another conclusion). Modular squaring

operations are available at a cost of O (n3
) operations and n matrices need to be calculated, thus the amount of

operations increases to the order of magnitude of O (n4
) .

As can be seen from the formula, multiplication and addition cannot be done “in situ”. The carrying out of an operation

is available at the cost of two temporary registers with n qubits and the production of the resulting matrix by 8
supplemental registers storing the multiplication results as intermediates. These registers can be reused in the next

calculation and for the estimation of y in each step. This increases the number of registers to implement to
1+4+2+8=15. In order to operate on 2,048 bit values, at least 30,720 qubits are needed (RSA factorization consumes

only about 6,100 qubits), and the operations to be carried out sums up to a value that is greater than 2048 cycles * 12
squaring operations per cycle on average * 90*n3 ≈ 2*1016. 4

Neither quantum control nor quantum correction is so far included in this calculation, which is however inevitable to

carry out the quantum computation because pure quantum systems used as the base for the operations described above
only have a lifetime of a few seconds at best. In the literature several models are discussed, adding up from individual

4 The proposed qubit numbers may vary according to some improvements of the base algorithms, but the increased
requirement nevertheless remains.

17

control qubits for every qubit used in the calculation to virtual qubits in surface code models. In theory it seems to be
possible to construct a quantum computer with the capability to break 2,048 bit RSA, which, due to quantum control

and correction, requires several giga qubits, and may be long term stable, but increases the computation time from a
few seconds in the ideal case to a couple of weeks at best [1] [19].

Assuming a QC which is capable to operate in the described area on finite fields can be built, and is still a threat to

classical public key systems from a practical point of view. We now have to cope with the framework condition of our

proposal, namely using ℚ instead of modular fields, and using floating point numbers with rounding operations in

the implementation of the algorithm. Quantum algorithms have to be strictly invertible, but due to rounding operations,

the operands can not be reconstructed from the result due to loss of information.
To show the consequences, we regard a typical operation sequence of the kind we described above in more detail:

U ∣x 〉 ∣0 〉∣0 〉 ∣0 〉→∣x 〉∣ y 〉 ∣Z 〉 ∣0 〉

CNOT∣x 〉∣y 〉∣Z 〉∣0〉∣x 〉∣ y 〉∣Z 〉∣y 〉

U−1
∣x 〉∣y 〉∣Z 〉∣ y 〉∣x 〉∣0〉∣0〉∣y 〉

--

V−1
∣x 〉∣0 〉∣0〉∣y 〉∣x 〉∣x 〉∣Z 〉∣ y 〉

CNOT∣x 〉∣x 〉∣Z 〉∣y 〉∣0 〉∣x 〉∣Z 〉∣ y 〉

V∣0 〉∣x 〉∣Z 〉∣y 〉∣0 〉∣0〉∣0〉∣y 〉

Here, from a starting state ∣ x 〉 and three empty registers ∣0 〉 , a final state ∣ y 〉 is produced. All registers

used in between are in the same pure states in the beginning as well as in the end. The first three rounds are used to

produce ∣ y 〉 and ∣ x 〉 , the next three rounds are used to erase ∣x 〉 . This approach is easily possible in

modular operations over finite fields, but using something like rounding operations (for instance a CNOT operation on
only a part of the complete register) would prevent from the possibility to roll back the algorithm later on. But rolling

back is inevitable because the result register has to be the only one not in a known pure state when the measurement

takes place. The best result that can be obtained is producing an end state ∣x 〉∣ y 〉 for each round of the algorithm.

A rough estimation for a secret of 100 decimal digits (~ 340 bit) leads to the following number of required qubits: the

floating point precision is 3 times the secret magnitude, resulting in ~ 1,000 qubit per value. For each round of the
exponentiation algorithm, two matrices with 4 elements each demand ~8,000 qubit as input, and ~16,000 qubit to

generate the results. At the end, ~8,000 qubit are used as the input for the next round, the other ~8,000 qubit have to be
maintained until they are erased in the rollback operation after the termination of the whole algorithm. Since there are

~340 rounds in total (one round for each bit of the secret), this sums up to 2.82 * 106 qubits, error control and
correction yet not considered. As this is the lower bound of the key length, and the number of qubits will increase at the

power of two if the secret bit size is increased, the number of qubits alone will represent „a big nut“ for quantum
computer researchers to construct computers of such magnitude, or to develop new algorithms decreasing the number

of qubits.

Assuming these problems can be solved, we have to look at the quantum algorithms in detail. Today, only two principle
quantum algorithms might be applicable:

• Grover’s algorithm [12] looking directly for a solution of the problem, and

• Shor’s algorithm [7, 8, 14] looking for periodical events that can be used to solve the problem.

Grover’s algorithm is the quantum computational equivalent of a classical brute force attack, and is known to cut the

complexity of the problem from O (n) to O (√n) , meaning there are O (√n) consecutive operations without

any interruption necessary on the QC to yield a useful result. Grover’s algorithm is - without any doubt - a quantum

algorithm that can theoretically be used to attack the proposed encryption algorithm. But regardless of whether a QC
with the required lifetime could be built, the amount of time using Grover’s algorithm to crack the problem increases

exponentially with increasing bit count of the secrets. Grover’s algorithm is consequently not a risk for the proposed
algorithm.

Shor’s algorithm is looking for periods in the exponential development which are present in modular arithmetics, and

therefore can break RSA keys, and those of other modular crypto systems. As a result of the theorems in section 1.2 the
RVB algorithm doesn’t have any periodic states in its working range. Consequently Shor’s algorithm cannot be applied

18

for pure mathematical reasons. Grover’s algorithm is therefore the best algorithm available today.

It can be concluded that algorithms using quantum effects known today cannot outperform algorithms running on
classical computers in order to successfully attack the proposed key negotiation algorithm.

Attack on algorithm Number of qubits Number of operations per try

Shor's algorithm on RSA, n = 2,048 bit ~ 3 n = 6,000 ~ 30 n4 = 5.3*1014

Grover's algorithm on T polynomials
over ℚ , n = 1,024 Bit

~ 15 * n2 = 15 * 10242 = 1.6 *107 ~ 1.2 * 1015 * √21,024 ~ 10170

Shor's algorithm on T polynomials, n =
1,024 Bit

Not applicable Not applicable

Table 6: Comparison of QC attacks on RSA and the proposed quantum-resistant public key exchange excluding
quantum control and quantum correction

3 Further applications of the RVB key exchange

3.1 Agreement Scheme for Conference Keys

Especially in online communications, very often more than two parties participate in a session. Using different keys on

two communication legs renders key management more difficult than necessary. Therefore, one key is desirable for all
participants. We restrict the following example to three participants only, but the scheme can easily be extended to a

large number of participants.
Alice, Bob, and Chiara agree on a common parameter x and calculate their intermediate values

B=T b(x) , A=T a(x) , C=T c (x)

using their secrets (a ,b , c) . The intermediate values are publicly distributed. The participants are now able to

calculate a second set of intermediate values:
BA=T a(B)=T b(A) , BC=T b(C)=T c(B) , CA=T c(A)=T a(C)

These intermediate values are distributed again. Please observe that it is sufficient that each participant only distributes
one value. In practice, a round robin strategy in the indices of the participants may be applied.

Having received the second set, all participants can compute their common secret value
ABC=T a⋅b⋅c=T a (BC)=T b(CA)=T c (BA)

For a practical implementation we have to observe that floating point precision needs to be increased for each

additional participant. If N digits of ABC have to be identical for all participants and n is the number of participants

and the magnitude of (a ,b , c) is of order G, the precision has to be of the order P=N+ n⋅G as a rule of

thumb.

Three-party key negotiation is very useful, e.g. for Voice-over-Internet-Protocol applications where a central telephony
server and two peers negotiate a shared key.

3.2 Certificates and Proof of Knowledge

The classic X.509 certificate scheme binds public and private parameters to the identity of the owner thus allowing for
authentication in addition to encryption. The certificates are signed by certification authorities, and the recipient of a

certificate has only to check the signature. Static signatures of this kind can however not be created with the proposed

19

algorithm. If authentication is wanted, one possibility is to prove a certificate in a live communication with the CA
using the private authentication scheme discussed below, and to store verified certificates on the user system to

decrease network traffic with the CA.

3.3 El Gamal type encryption scheme

If Bob‘s public parameters x , y=T b(x) are verified by a certificate (or an arbitrary other protocol), Alice can use

an El Gamal scheme to encrypt a message to Bob. Alice chooses a secret value a , calculates
R=T a(x) , S=T a(y) , and masks the message N by

Q=sha3(S)⊕N

The pair R ,Q is sent to Bob who decrypts the message by

N=Q⊕sha3(T b(R))

Of course only the significant digits of S , T b(R) can be used in this operation.

3.4 Private Authentication and private Signature

We present two protocols to arrive at a shared long term secret between Alice and Bob:
1. If Alice and Bob used a common public parameter x to set up their certificates with the key pairs

ya=T a(x) , yb=T b(x) , they immediately arrive at a shared secret key K=T a∗b(x) without further

action.

2. If Alice and Bob used individual parameters xa , x b to set up the certificates ya=T a(xa) , yb=T b(xb) ,

an initial protocol has to be used once to arrive at a shared key. They both choose random numbers Ra ,Rb

and send them El Gamal-encrypted to the respective partner, K=Ra⊕Rb being their long term shared

secret. This procedure is necessary to force both partners to use their secret in the negotiation.

This key, however, cannot be used in communication because it is a constant key. On the other hand they can be sure
that only the partner is in possession of the correct key.

In order to communicate, they agree on a random value R which can be publicly negotiated. The individual session
key is built by computing

K sess=sha3(K ∣R)

The shared long term secret can also be used as a private signature in asynchronous communication with the message
transmitted in clear. Sending a message M , Bob adds

S=sha3(K ∣ M)

as a signature. Alice knows that only Bob could have produced this MAC. But Alice cannot convince a third party that
the value originates from Bob. Alice can even not convince anybody that K is a negotiated secret shared with Bob

as long as Bob doesn’t admits that this is the case.

3.5 Hidden negotiated Signature

In most cases the authentication of the sender of a message is sufficient. But there may be applications where the

authorship of the document or the document itself has to be proved. A provable document is defined by using the terms
introduced previously:

D={Q a , Ra ,Qb , Rb, AES (K , M)}
20

with M being the message in the clear, K being the key to encipher M , and the pairs Qx , R x being the

El Gamal enciphered K using the certificates of Alice and Bob. Alice, and Bob may verify by an appropriate
protocol that all values are valid, but because the mathematics of RVB don’t feature any invertible parts, either Alice,

or Bob can produce such documents without involving their partner, so D alone cannot be proven without further
assistance.

We thus introduce a trusted third party as a bookkeeper. Both Alice and Bob must be registered as verified users by
their certificates (which may be master certificates, not those used for the encryption of the message). All messages

between Alice, Bob, and the bookkeeper are handled by the authenticated scheme above. As a signature, Alice and Bob
send

H a=HMAC (Sa , D) , H b=HMAC (Sb , D)

to the bookkeeper using the secret values that were used to generate the El Gamal pairs Qx , Rx . In order to assure

the bookkeeper that they are referring to the same D , they agree on a further random value T and send both
H=HMAC (T , D)

to the bookkeeper. Because Alice and Bob will have processed D before, and found it a correct document, the

bookkeeper may assume that they both want to sign the message, and stores {H , H a , H b } as the signature.

Note: the bookkeeper doesn’t have any knowledge about the document D , because he doesn’t know T . He

can’t even link a given document D' to any triple {H , H a , H b } in his database, and it is possible for Alice and

Bob to agree on some faked signature values for camouflage. The bookkeeper has only the value H to link
H a , H b he got individually from Alice, and Bob.

In case the authorship of a document has to be proven, the following procedure is executed: if Alice wants to prove the

signature, she presents the tuple {M ,Sa , T ,Qa , Ra ,Qb ,Rb } and the certificate she used to a judge. The judge can

thus decrypt K from Qa , Ra , encrypt M , build D , and calculate the signature values H a , H . He can

now identify the triple {H , H a , H b } in the bookkeeper’s database. Because the bookkeeper avows for the

participation of Bob in the protocol, the authorship of Alice, or Bob, or both depending on the message itself is proved.

Note: the judge is however not able to check Qb , Rb , H b , but there is no necessity to do so because B has delivered

H before, a value which he could only provide if he is the author, or the receiver of the message m . He was

identified during this procedure by the bookkeeper through his master certificate in a private authentication scheme.
Alice was not able to provide these values alone. Bob is anyhow convicted – if he cooperates or not.

Assume now Bob is cheating and presents a tuple {M ' , S 'b , T ' , Q'a , R 'a ,Q 'b , R 'b } to the judge, claiming Alice

being the author, or receiver of M . The judge now can proceed as before. But to convince the judge, Bob has to

choose his tuple so that at least
H=HMAC (T , D)=HMAC(T ' , D ') ,

for some document D registered by the bookkeeper which can only be the case if
Bitstring (T +D)=Bitstring (T '+D ')

This may be done by shifting the boundaries, i.e. taking a longer T ' , and a shorter D' . But since D'

comprised AES(K ' , M ') , and only M ' is provided to the judge, he can do so only if he has broken the AES

encryption algorithm, or the secure hash algorithm. As a matter of fact, Bob cannot cheat.

It is important to remark that the signature certificate of Alice cannot be used in the future because private key has been

disclosed to the judge. But this signing certificate neither has to be the one used to authenticate Alice during the
communication with the bookkeeper, nor the certificate she used to communicate with Bob. Both can agree on

individual signing certificates for each document using the private authentication scheme. By registering a document at
the bookkeeper, Bob has agreed to Alice’s signing certificate implicitly, and no further proof is necessary.

Although Alice’s signing certificate cannot be used in the future because private key has been disclosed to the judge,

elder signatures produced with the same certificate are not concerned because nobody can link S a to

{H , H a ,H b } in the bookkeeper’s database, except for Alice and Bob. Even if enough information is leaked that an

attacker Eve is able to present a valid tuple for another triple to the judge, she cannot claim to be the author of the

presented document, because the secret value S a is already linked to Alice.

21

3.6 Static Signature

Bob generates a certificate that contains a public key consisting of two rational numbers x , y=T r(x) with r

representing Bob's secret key. r Consists of two parts r=r1∗r2 , r1 being a large random number,

r2=∏
k=1

np

pk
ek

being a number composed of the first n p primes with completely known exponent vector e=(e1, ...enp
) .

In order to sign a message N , Bob computes the hash value h=Hash(N) . r2 has to be large compared with

h . Using e , Bob selects a number h' with known exponent vector e ' : ∀ e' k :e 'k≤ek which is near

h . Thus h' ∣ r2 ,r . Bob publishes s=h−h ' , z=Tr /h'(x) as the signature.

Alice verifies the signature by calculating y=T h+s(z)=T h+s(Tr /(h+s)(x))=T r(x) .

By collecting a number of signatures, attacker Eve may learn about the composition of r2 . But as Eve doesn‘t learn

anything about r1 , she cannot commit fraud because she is not able to compute z .

Typically Bob has to add s in order to yield a divisor (h+s)∣ r2 . Knowing a signature, attacker Eve may publish

another pair h' , s'=(h+s)−h' which is a valid signature as well. To prevent from this, s must not exceed a

given magnitude smax . If a larger s ist found, the signature is refused by the recipient. A satisfactory border may

be |s|≤smax=√h . If forinstance a 256 bit hash value is signed, attacker Eve has to find a near collision with exactly

the same bits in the upper 128 bit of the original value to forge a signature if this value is taken.

The boundary smax can be chosen arbitrarily to meet the security recommendations of the signer. She has however to

construct r2 carefully, so that the maximum grid width of divisors of r2 is not larger than smax (in effect, r2

has to be increased when smax is decreased), and because the selection of h' is primarily a knapsack problem, the

computation time for finding a h ' will also increase with decreasing smax .

3.7 Group Secrets

In some applications only a group of peers should be able to produce a valid secret value for security reasons. In order

to mount such a scheme, a trusted issuer chooses the parameters at random and computes

s=∏
i=0

n

si , y=T s(x)

The si are distributed to the participants, (x , y) are public values.

If Alice sends R=T r(x) to the group, the peers consecutively compute

T s⋅r=T s0
(T s1

(...T sn
(R)))

The order in which the intermediate results are produced is arbitrary, but they must be produced one after the other.
There exists no other way to produce the correct secret.

Due to the multiplicative combination of the secrets, two problems arise:
• The combined secret s may become very large and therefore the required floating point precision as well.

• The more peers cheat and share their secret, the easier it is to mount an insider attack to unveil the secret s.

22

3.8 Partial Group Secrets

To let a subgroup of size m+1 of n peers generate a common secret value; a trusted issuer chooses

s , p>s , Pm(z)

where p is a large prime number and

Pm(z)=s+∑
k=1

m

ak xk
(mod p)

an arbitrary polynomial of degree m . With some arbitrary and large integer values the trusted issuer computes

zi , yi=Pm(zi)(mod p) , 1< i<n

The tuples (zi , yi) are distributed among the peers. The calculation uses large integer modulo operation and is

therefore always precise. (x , y=T s(x)) are again the public values.

To restore the secret, a (second) trusted party (for instance a special hardware device) collects the tuples (z i , y i)

from at least m+1 peers which can be chosen arbitrarily. Having m+1 tuples, a polynomial of degree m can

unambiguously be reconstructed, for instance by Lagrange's, or Newton's formula. From the construction the first

coefficient, or the value Pm(0) is the secret for the T polynomial. The trusted party can now compute the common

secret with Alice's intermediate value, and deliver it to the peers.

In order to keep the secret a secret, the trusted party has to be constructed in a way that the tuples are used only once,
and are then erased from memory. For the next reconstruction of the secret, the whole process has to be started again.

It should be noted that modular arithmetics are used in this protocol in spite of the intrinsic vulnerability to QC attacks.
In this scheme this although does not provide a possibility for an attack. All modular parameters are known to all peers,

but this doesn’t allow to reconstruct the polynomial as long as the peers don’t share their values.

3.9 Secret on Behalf of a Group

The intention of a special scheme for a secret on behalf of a group is a possibility to disclose the identity of the acting

group member. Alice however does not need to know the identity.
Just like the Partial Group Secret described in the previous paragraph, the trusted issuer sends the three values

x , si , s ' i=∏
k=1
k≠i

n

sk

to each peer. (x , y=T s i⋅s ' i
(x)) are the public values for the group. As can easily be verified, each peer can now

compute the common secret with Alice on its own by applying both values s i , s 'i consecutively:

y=T si
(T s ' i

(x))
yalice=T alice(x)
SECRET=T si

(T s ' i
(yalice))=T alice(y)

The principle of numerics guarantees that the significant digits L are identical, whoever of the peer generates
T s⋅alice(x) .

The region of lost digits by rounding operations however depends on the functions involved, and the consequence is
that

0< ∣T si⋅s ' i⋅alice(x)−T sk⋅s' k⋅alice(x)∣≤10−L

The rounding region can therefore be used as a fingerprint of the acting peer. In case of a disclosure, the acting peer

himself, or at least the other N-1 group members can verify who the actor was under the precondition that the values
are derived honestly, and the complete y values comprising the unused digits in the secret negotiation are stored in the

protocol. The differences are however small. Using floating point numbers of 500 digits size, secret indices

r , s∼10105 , and 3 parties constituting the peer group, we found using the matrix algorithm:

23

Number of equal positions between peer
group and Alice

~ 300

Region of difference between peers after
position

~ 400

A negotiation protocol must guarantee that a sufficiently high number of digits of all parts of the negotiation are
preserved to allow for the proof of authorship.

A peer may cheat by multiplying both values delivered to him to get the group secret s as a single value, and thereby
circumvent the fingerprint mechanism. In an implementation, further measures have to be taken to force the peers to

use the secret values consecutively, for instance by a special hardware device hiding the values from the group
members.

4 Summary

4.1 General

We have introduced a very fast public key negotiation algorithm using less bits in the key exchange protocol than

comparable classic public key schemes of similar security levels, and being also faster if the same bit size
representation is used because there are less operations necessary. The key exchange can even be directly integrated in

the audio RTP stream of popular VoIP applications. The principle is in fact not new [3, 4, 5, 6], but the authors
previously working on such schemes were not sufficiently aware of the power of numerics.

We have also shown that the algorithm is resistant to quantum computer attacks. The proof is purely mathematical and
therefore there is no room for the argument of „future improvements in QC theory“ to break the algorithm.

The algorithm however does not provide a static public signature scheme due to the underlying mathematics. We have
shown that this can easily be overcome by modified certificate handling, private signature schemes and participation of

trusted parties, depending on the intended authentication method without leaving information to involved third parties
except in case of a dispute.

24

4.2 Algorithm summary

Secret Key Length 100 decimal digits = 332 bit, as well as 200 (=664 bit) and 300
decimal digits (=996 bit)

Other Secret Key Lengths Arbitrary

Valid Common Values −1<x<1 , x∉ {±0.5 ,0}

Common Value Length Arbitrary, but not exceeding the number of digits of the secret
keys

Common Value Selection Arbitrary for every key exchange – preferrably at random. A
common value may however be fixed by a standard for use by
an arbitrary number of users to simplify extended applications
(see section 3)

Floating Point Precision 3 times the secret key length recommended

Public Key Length Floating point precision, optionally reduced

Shared Secret Length Secret key length, optionally reduced

Public Key Negotiation , El Gamal Encryption, etc Equal secret key length recommended.

Protocol Parameters A protocol using the algorithm for encryption must provide the
following parameters:
common value, public key, secret key size, public key size,
shared secret size

Exceptions The protocol must provide control and error messages for the
shared key (see section 1.3, string representation; although not
very likely, incompatible states may arise)

Execution speed of the reference implementation for
the entire key exchange (Alice AND Bob) on an
Intel i7-6700K quad core microprocessor operating
at 4.00 GHz. 64 bit microcode (NIST PQC
reference platform)

In 100 decimal digit mode: 6 ms without OpenMP (7 ms with
„acceleration“ by OpenMP).
In 200 decimal digit mode: 18 ms with OpenMP (22 ms
without OpenMP).
In 300 decimal digit mode: 35 ms with OpenMP (59 ms
without OpenMP).
If OpenMP is to be used, the numeric libraries must to be
compatible with OpenMP, which needs to be checked.

RAM consumption of the reference implementation
for the NIST PQC reference platform

In 100 decimal digit mode: 7 kByte.
In 200 decimal digit mode: 11 kByte.
In 300 decimal digit mode: 16 kByte.

25

4.3 Security Summary

Based on the values stated in section 4.2:

Primary Secret Range 332 bit random integer for setting to 100 decimal digits, 664 bit
random integer for setting to 200 decimal digits and 996 bit
random integer for setting to 300 decimal digits.

Shared Secret Range 332 bit pseudo-random floating point value for setting to 100
decimal digits, 664 bit pseudo-random floating point value for
setting to 200 decimal digits and 996 bit pseudo-random floating
point value for setting to 300 decimal digits.

Security when used in conjunction with a
symmetric cipher

256 bit strength (e.g. for use with AES256) for 100 decimal digits
(approx. 332 bit), approx. 505 bit strength for 200 decimal digits
and approx. 743 bit strength for 200 decimal digits.
Considering the results in section 2.2, and in order to be
conservative in security estimations, we assume that a 332 bit (100
decimal digit) shared key features a security equivalent to a
symmetric cipher key of 256 bit.

Further Increase of Security The security level may be adjusted by
• increased secret size (floating point precision has to be

adjusted accordingly)
• public key size limitation depending on the

characteristics of attack to prevent from (shared secret
size has to be adjusted accordingly)

Modification Options In order to counter the most extreme types of attacks mentioned in

section 2.4, public parameters must be kept away from roots and
extrema. A repeated key negotiation with different values should

be enabled by the protocol.

Furthermore the limitation of the digits size of all public values to

values lower than the floating point precision is possible. The
executing device must cut the length to the values given in the

protocol parameters prior to any computation. This limiting of
parameter size will have a negative impact on the shared secret

size.

Immunity from Chosen Plaintext / Adaptive
Chosen Plaintext Attacks

IND-CPA and IND-CCA2
The way RVB is applied is identical with Diffie Hellman / El
Gamal.
We have no evidence that an attacker can profit from sampling up
to 264 input/output pairs and using an „oracle“.

Quantum Computer Security Shor‘s algorithm: Not applicable due to mathematical properties.
Grover‘s algorithm: algorithmic attack may be implemented

Qubit Demand in QC Attacks O (pre2
) due to floating point arithmetics, pre being the

floating point precision present in the classical calculation

Quantum Gates O (pre3
∗e pre /2

) for full execution of Grover‘s algorithm

Quantum Computer Security Even under NIST‘s assumptions of the QC development path we
think that our basic RVB implementation is a „tough nut“ for a QC
to crack. Sizes of secret parameters may be increased arbitrarily.
Due to the quadratic increase in qubit / gate count, we assume that
the algorithm can outrun practical QC easily for a long time. It
should be kept in mind that Grover‘s algorithm execution time
increases exponentially in the number of bits!

26

References:

[1] B. Lekitsch, S. Weidt, A. Fowler, K. Molmer, S. Devitt, C. Wunderlich, W. Hensinger, Blueprint for a microwave
trapped ion quantum computer, 2017, http://www.physik.uni-

siegen.de/quantenoptik/forschung/publikationen/publis/sciadv_e1601540.pdf

[2] E. Weisstein, Chebyshev Polynomial of the First Kind, from MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html

[3] G.J. Fee, M.B. Monagan, Cryptography using Chebyshev polynomials, 2003,
http://www.cecm.sfu.ca/CAG/papers/Cheb.pdf

[4] Garry J. Tee, Permutable Polynomials and Rational Functions, 2011,

http://nzjm.math.auckland.ac.nz/images/3/31/Permutable_Polynomials_and_Rational_Functions.pdf

[5] P. Bergamo, P. D'Arco, A. De Santis, L. Kocarev. Security of Public Key Cryptosystems based on Chebyshev
Polynomials, 2004, http://www.di.unisa.it/~paodar/preprint/pdf/web_chaos.pdf

[6] L. Kocarev, Z. Tasev, P. Amato, Rizzotto, Encryption process employing chaotic maps and digital signature process,

2005, US Patent 6,892,940 D2 (Foreign Application Priority: Apr. 7, 2003, EP 03425219)

[7] Shor's Factoring Algorithm, Notes from Lecture 9 of Berkeley CS 294-2, 4 Oct 2004,
http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec9.ps

[8] IBM's Test-Tube Quantum Computer Makes History, Press release, 19 Dec 2001,

http://www-03.ibm.com/press/us/en/pressrelease/965.wss

[9] T. Monz, P. Schindler, J. Barreiro,M. Chwalla, D. Nigg, W. A. Coish, M. Harlander,W. Haensel, M. Hennrich, R.
Blatt, 14-Qubit Entanglement: Creation and Coherence, 2011,

http://mina4-49.mc2.chalmers.se/~gojo71/KvantInfo/LiteratureProjectPapers/14-Qubit%20Entanglement
%20Creation%20and%20Coherence.pdf

[10] IBM Scientists Achieve Critical Steps to Building First Practical Quantum Computer, Press release, 29 Apr 2015,

http://www-03.ibm.com/press/us/en/pressrelease/46725.wss

[11] G. Brands, Einführung in die Quanteninformatik, 2011, Springer Verlag, ISBN 978-3-642-20646-7

[12] L. K. Grover, A fast quantum mechanical algorithm for database search, 1996, http://arxiv.org/pdf/quant-
ph/9605043v3.pdf

[13] G. Marsaglia, Website: The Marsaglia Random Number CDROM including the Diehard Battery of Tests of
Randomness, http://www.stat.fsu.edu/pub/diehard/

[14] J. Proos, C. Zalka, Shor's discrete logarithm quantum algorithm for elliptic curves, 2008,

 http://arxiv.org/abs/quant-ph/0301141

[15] BSI TR-02102-1, 2017,
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-

TR-02102.pdf?__blob=publicationFile

[16] G. Brands, C.B. Roellgen, K.U. Vogel, QRKE: Quantum-Resistant Public Key Exchange, 2015,
27

http://arxiv.org/abs/quant-ph/0301141
http://www.stat.fsu.edu/pub/diehard/
http://arxiv.org/pdf/quant-ph/9605043v3.pdf
http://arxiv.org/pdf/quant-ph/9605043v3.pdf
http://www-03.ibm.com/press/us/en/pressrelease/46725.wss
http://mina4-49.mc2.chalmers.se/~gojo71/KvantInfo/LiteratureProjectPapers/14-Qubit%20Entanglement%20Creation%20and%20Coherence.pdf
http://mina4-49.mc2.chalmers.se/~gojo71/KvantInfo/LiteratureProjectPapers/14-Qubit%20Entanglement%20Creation%20and%20Coherence.pdf
http://www-03.ibm.com/press/us/en/pressrelease/965.wss
http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec9.ps
http://www.di.unisa.it/~paodar/preprint/pdf/web_chaos.pdf
http://nzjm.math.auckland.ac.nz/images/3/31/Permutable_Polynomials_and_Rational_Functions.pdf
http://www.cecm.sfu.ca/CAG/papers/Cheb.pdf
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
http://www.physik.uni-siegen.de/quantenoptik/forschung/publikationen/publis/sciadv_e1601540.pdf
http://www.physik.uni-siegen.de/quantenoptik/forschung/publikationen/publis/sciadv_e1601540.pdf

https://www.researchgate.net/publication/282286331_QRKE_Quantum-Resistant_Public_Key_Exchange

[17] G. Brands, C.B. Roellgen, K.U. Vogel, QRKE: Extensions, 2015,
https://www.researchgate.net/publication/283213947_QRKE_Extensions

[18] G. Brands, C.B. Roellgen, K.U. Vogel, QRKE: Resistance to Attacks using the Inverse of the Cosine

Representation of Chebyshev Polynomials, 2016,
https://www.researchgate.net/publication/291945494_QRKE_Resistance_to_Attacks_using_the_Inverse_of_the_

Cosine_Representation_of_Chebyshev_Polynomials

[19] G. Fowler, Matteo Mariantoni, John M. Martinis and Andrew N. Cleland: Surface codes: Towards practical large-
scale quantum computation, 2012, https://arxiv.org/abs/1208.0928

28

https://arxiv.org/abs/1208.0928
https://www.researchgate.net/publication/291945494_QRKE_Resistance_to_Attacks_using_the_Inverse_of_the_Cosine_Representation_of_Chebyshev_Polynomials
https://www.researchgate.net/publication/291945494_QRKE_Resistance_to_Attacks_using_the_Inverse_of_the_Cosine_Representation_of_Chebyshev_Polynomials
https://www.researchgate.net/publication/283213947_QRKE_Extensions
https://www.researchgate.net/publication/282286331_QRKE_Quantum-Resistant_Public_Key_Exchange

	1 The RVB algorithm
	1.1 Chebyshev Polynomials
	1.2 Mathematical Properties
	1.3 Practical Computation of T polynomial values
	1.4 Numerics
	1.5 Representation
	1.6 Specification of the RVB algorithm
	1.7 Estimated computational efficiency and memory requirements

	2 Security
	2.1 General Remarks
	2.2 Measurements of Randomness
	2.3 Brute force sieve using Diophantine Equations
	2.4 Chosen Plaintext Attacks / Chosen Ciphertext Attacks
	2.5 Quantum Computer Security

	3 Further applications of the RVB key exchange
	3.1 Agreement Scheme for Conference Keys
	3.2 Certificates and Proof of Knowledge
	3.3 El Gamal type encryption scheme
	3.4 Private Authentication and private Signature
	3.5 Hidden negotiated Signature
	3.6 Static Signature
	3.7 Group Secrets
	3.8 Partial Group Secrets
	3.9 Secret on Behalf of a Group

	4 Summary
	4.1 General
	4.2 Algorithm summary
	4.3 Security Summary

